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Preface

This is a book you can read in the park, on the beach, at the bus stop — or even
in the bath.

The book is in two parts. The first part takes you step-by-step through the
fundamental ideas of digital signal processing, while the second part shows how
these ideas are used in a wide range of practical situations. My aim is that by the
end of the book you will understand many of the signal processing algorithms
and techniques that are essential to everyday devices such as digital cameras,
modems, digital set-top boxes, mobile telephones and digital audio players. I have
used examples drawn from the operation of such devices to help explain points
in the text. '

You do not need to know any calculus to understand any of the ideas discussed.
A basic understanding of trigonometry and of arithmetic on complex numbers is
necessary, however; and a very basic knowledge of the principles of electronic
circuits is helpful, but by no means essential.

If you are a student, I hope that the approach this book takes will give you a more
concrete and more intuitive grasp of the principles of digital signal processing
than a purer mathematical treatment would. If you are a practising engineer or
programmer with a particular problem to solve, I hope that the book helps you
understand the problem and decide on the right way to tackle it. And if you are
just interested in the subject for its own sake, I hope you enjoy the book.

There are exercises at the end of each chapter. Some of them you can probably
do in your head; for some you might need pencil and paper; and for some you will
need to write a short program. Some are slightly more ambitious programming
projects. A few ask you to criticise inappropriate solutions to signal processing
problems suggested by a hypothetical friend who has clearly not read this book: if
you have any friends in this position you can remedy the situation by buying them
a copy. Please try the easier exercises and at least think about how you would go
about the harder ones; and please don’t take your computer into the bath.
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Introduction

1.1 What is a signal?

A signal is a varying quantity whose value can be measured and which conveys
information. ;

For example, we can consider temperature to be a signal. It can vary over time,
we can measure it using a thermometer, and it conveys information: knowing the
temperature outside will inform our decision as to which clothes to wear.

In a digital signal processing system we represent a signal as a sequence of
numbers either on a computer or in digital hardware. For example, we could store
the temperature at various times of the day as a sequence of numbers in an array
on a computer: each number might be a temperature reading in Celsius.

Digital signal processing involves transforming one signal into another signal,
represented digitally throughout. The transformation is achieved using simple
operations on the numbers representing the signal. For example, we might want
to know the average temperature over a day: we could calculate this by adding
up the elements in the array of temperature data and dividing the total by the size
of the array.

1.2 Domain and range of a signal

Temperature is a function of a single real-valued variable, time: see Figure 1.1. We
say that the domain of the signal is one-dimensional. Some signals are functions
of more than one variable. For example, a black-and-white photograph can be
regarded as a signal: the brightness u of a point on the photograph is a function
of two variables, the x and y coordinates of the point on the photograph: see
Figure 1.2. In this case the domain of the signal is two-dimensional.

In a black-and-white photograph, the brightness of a point on the photograph
can be represented as a single real number, and so we call it a real-valued signal,
and say that the range of the signal is one-dimensional. In a colour photograph,

3
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temperature

Figure 1.1 A signal with one-dimensional range and one-dimensional domain.

ulx, y)=
brightness at point (x, y)

y

Figure 1.2 A signal with one-dimensional range and two-dimensional domain.

however, one real number will not do. The colour of a point can be expressed as
three real numbers, separately giving the amount of red, green and blue that go
to make up the colour. In this case, we would say that the range of the signal is
three-dimensional.

Now let us consider a colour movie. The colour of a point on the screen with
given x and y coordinates can be expressed as three real numbers for the amounts
of red, green and blue as described above. However, the picture also changes
with time, which adds an extra dimension to the domain of the signal. In total we
therefore have three dimensions in the domain (x, y and time) and three in the
range (red, green and blue).

1.3 Converting signals from one form to another

A device that converts a signal from one form to another is called a transducer.
Often the signal on one side of the conversion will be an electrical one.

1.4 Processing signals 5

A loudspeaker is an example of a transducer, in this case converting an electrical
signal into a varying air pressure to create a sound. The variation in air pressure is
a real-valued function of time. A microphone is a transducer that converts in the
opposite direction, from variations in air pressure to variations in an electrical signal.

1.4 Processing signals

Suppose we want to

— modify the amount of bass and treble in an audio signal

— analyse an image to determine whatlobjccts are present in it
— compute seasonally adjusted temperature values

— make a photograph sharper or increase its contrast

— measure the pitch of a musical instrument

All of these are examples of signal processing tasks. Later in this hook we shall
look at how we might go about these kinds of task.

Another common signal processing task is data compression, where we take
advantage of special characteristics of a signal to reduce the resources required to
store or transmit it. For example, recorded speech often contains long pauses. We
can identify these pauses and delete them. To take another example, one frame
of a movie is often very similar to the previous one. We can process the signal
to find which parts of the picture are changing, and only record those.

Why digital?

Many signal processing tasks can be done using conventional analogue electronics.
Our first example above, a tone control which modifies the amount of bass and
treble in an audio signal, is particularly simple using analogue technology. If our
signal is in the form of a varying voltage, the necessary circuit consists of just a
couple of components costing a few pence in total!

Analogue processing systems suffer from several disadvantages, however. Our
tone control circuit will be fine as long as we are not too demanding about its
performance: if we manufacture several copies of the circuit, the chances are that
its characteristics will vary, probably by as much as several per cent from unit
to unit. If we needed less variation from unit to unit we could use better-quality
components, but that would increase the cost. Alternatively, we could add an
adjustment to the circuit so that we can accurately trim each unit to compensate
for manufacturing variations, but that would make the assembly process more
complicated and so more expensive. The characteristics of analogue systems also
tend to drift slowly over time and with temperature.
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Any processing which involves storing a lot of information — comparing suc-
cessive frames of a movie, for example — will almost certainly be complicated
and expensive when implemented using analogue circuitry.

Further disadvantages become apparent when we turn to integrated circuits
(ICs). It is perfectly possible to make ICs with analogue circuits on them, but
processing involving low frequencies, such as the bass part of an audio signal,
usually requires physically large components which are difficult to make on an
IC. There are also technical difficulties, as well as extra cost, associated with
mixing analogue and digital circuitry on a single IC.

Many electronic devices already necessarily incorporate digital circuitry. For
example, consider adding a tone control to a CD (compact disc) player which
already uses a digital integrated circuit to decode the information stored on the
disc. In this case, the cheapest option could easily be to implement the tone control
digitally on the same IC: this would add very slightly to the size and hence the
cost of the IC, but no extra components would be needed and assembly costs
would remain the same.

Once the decision is made to implement the tone control digitally, it becomes
very simple to add extra features, such as tone settings optimised for different types
of music, all at very liftle extra cost compared with an analogue implementation.

There are, of course, disadvantages to doing things digitally. As we shall see in
later chapters, there are some hazards to avoid when converting a signal between
analogue and digital forms. If the processing you want to do is not demanding, and
the signal is not already in digital form, the overhead of converting from analogue
to digital and back can easily outweigh the advantages of digital processing.

1.5 Notation

Before proceeding further we will make a few remarks on the notation used in
this book.

Complex numbers

Sometimes in this book we will be considering signals which take on complex
values. They can be thought of as having a two-dimensional range, the two
dimensions being the real and imaginary parts of the complex values. They arise
more frequently in the intermediate steps in processing a signal than they do
naturally as physical quantities (although of course you can think of any two-
dimensional quantity as a complex number if you like).

In this book we will write j for the square root of —1. (Engineers often use i
to stand for electrical current.) We will write the real part of a complex number z

1.5 Notation 7

Imz
A

z=Rez+jlmz
=r(cosf+jsing)

Sv

Figure 1.3 A point z in the complex plane can be represented in terms of its real
and imaginary parts, or in terms of its magnitude and argument.

as Rez and the imaginary part as Imz. The magnitude of z, |z|, is the distance
between the point z and the origin of the complex plane; and the argument of z,
arg z, is the angle between the real axis and the line from the origin to z, measured
anticlockwise.

Figure 1.3 shows that we can write a complex number z in terms of its real
part x = Re z and imaginary part y =Imz as

=x+jy
or in terms of its magnitude r = |z| and argument 6 = argz:
z=rcosf+jrsinf
= re¥,

We will frequently switch between these two representations of complex numbers.
One handy use of complex numbers is to represent angles. An angle # can be
represented by the complex number z = cos 6+ jsin 6 = ei®. The magnitude of z
is 1, and so this is a point in the complex plane that lies on a circle of radius 1
centred on the origin (the unit circle). The argument of z is §: see Figure 1.4. The
advantage of this representation is that the angle 359° (very nearly a complete
revolution) is represented by a point very near to the one that represents 0°, which
simplifies calculations in some applications: Exercise 1.4 gives an example.

Block diagrams

We will often use block diagrams to help explain how digital signal processing
systems are built up from simple modules. Each module is thought of as carrying
out an operation on a sequence of incoming numbers one at a time, producing
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Imz

i

T T s cos B+ 5in

T

=

Figure 1.4 Representing an angle as a point on the unit circle in the complex plane.

a processed sequence of numbers at its output. Lines with arrows show the
interconnections between modules.

The most basic modules are those that carry out the arithmetic operations of
addition, subtraction, multiplication and division. The symbols we use for these
modules are shown in Figure 1.5(a) to (d). The label on the input to the subtractor
indicates that it subtracts its bottom input from its top one; likewise, the divider
divides its bottom input into its top one.

Modules that carry out other operations are shown as boxes labelled with the
relevant function. A box labelled with a ‘D’ delays its input by one time unit: see
Figure 1.5(e).

These basic modules can be put together to construct higher-level building
blocks such as filters, as we will describe in Chapter 5. Filters are often used as
modules in more complicated signal-processing systems and so have their own

Figure 1.5 Block diagram symbols: (a) adder; (b) subtractor; (¢) multiplier;
(d) divider; (e) delay element; (f) low-pass filter; (g) band-pass filter; (h) high-
pass filter.

-

Exercises 9

symbols. The symbols for the three main types of filter, known as ‘low-pass’,
‘band-pass’, and ‘high-pass’, are shown in Figure 1.5(f) to (h).

Exercises

1.1 At the beginning of the chapter we used outside temperature of an example
of a signal, considering it only as a function of time. A weather forecast,
however, will talk about temperature not only as a function of time, but as a
function of location in the country: how many dimensions does the domain
of this signal have?

An aircraft pilot whose hobby is signal processing thinks of the outside
temperature as a signal. How many dimensions would you imagine he thinks
its domain has?

1.2 Consider a black-and-white movie as a signal. How many dimensions do its
domain and range have?

1.3 Use the following procedure to determine roughly how accurately you can
represent real numbers on your computer. Set a floating-point variable a to
1. Set a variable b to 1+ 107* for various integer values of k, and compare
a for equality with b. Find the largest value of k for which your computer
reports that a is not equal to b. The machine precision is then roughly one
part in 10%.

A capacitor is manufactured using metal plates of length 1 millimetre, and
the capacitance is directly proportional to this length. If the capacitor is to
be made to the same precision as the numbers you can represent on your
computer, what variation can we allow in the length of the metal plates? If
an atom is 107'0 metres across, how many atoms does this correspond to?

1.4 Five hikers with varying levels of expertise at reading a compass attempt to
measure the bearing of a landmark (i.e., the angle between a line pointing
due north from where they are standing and a line to the landmark, measured
clockwise when viewed from above). Each produces an answer in degrees
from 0° to 359° inclusive. Using complex numbers, devise a procedure to
take the five readings and average them to produce a more reliable result.
Try it on the following sets of bearings: (a) 12°; 15°; 13°; 9°; 16°; (b) 358°;
1°; 359°; 355°; 2°; (c) 210°; 290°; 10°; 90°; 170°.

Suppose you have more confidence in the compass-reading skills of some
of the hikers than others. Describe a simple extension to your procedure to
give a different weight to each reading.
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Sampling

In Chapter 1 we looked at various types of signal. We now start to examine how
signals can be processed digitally.

2.1 Regular sampling

The first step is to reduce a continuous signal to a finite number of values, in
a process called sampling. For example, if we have a signal that varies with
time, such as an audio signal, then we normally measure its value at equal
temporal intervals. The audio signal is then represented by these regularly spaced
measurements or samples as shown in Figure 2.1. The sample values (+4.7, +3.3,
+4.2, etc.) would typically be stored in consecutive elements of a one-dimensional
array. The sampling process is similar to the way a movie camera takes a series
of pictures of a scene, regularly spaced in time; or to the way a dieter weighs
himself every morning.

We can sample a two-dimensional signal in a similar way. For example, a still
image can be sampled spatially by overlaying it with a rectangular grid of points.
A greyscale image is represented by a two-dimensional array of values giving the
intensity at each sample point. Usually the value 0.0 is used to represent black,
and 1.0 is used to represent white, although other scales are also used.

Note that sampling the intensity of an image at a single point is not quite the
same thing as averaging it over a small area around that point, which is what
typical scanners and cameras do. We shall return to this distinction in Section 3.5.

In a colour image, three numbers may be used to represent each sample point,
the numbers being proportional to the amount of each of the three primary colours
(red, green and blue) present in the colour at that point.

When sampling occurs at regular intervals of time, as in the case of an audio
signal, we usually speak of its sample rate, measured in units such as samples per
second, or Hertz (Hz). If sampling is spatial, as in the case of the still image, we
normally talk of its resolution, measured in units such as pixels per millimetre or
dots per inch (dpi).

10
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Figure 2.1 A typical audio waveform: (a) the original signal; (b) sample points
on the waveform; (c) sampled representation.

The process of sampling discards some information about the signal. If an event
occurs in the moment between the frames taken by a movie camera, it will not
appear on the film. This can be seen in coverage of (especially outdoor) sporting
events, when, because the lighting is very bright, the camera’s shutter only opens
very briefly for each frame. A fast-moving ball will appear to jump from position
to position across the screen. Of course, the ball does not really jump; rather, the
fact that the ball was between those positions was just never captured on the film.

In the same way, if an audio signal changes very quickly over time compared
with the rate at which we take samples, or if an image includes features which
are small compared with the sampling resolution, then we will not catch all the
variations in the original. We will now make this idea more precise.

2.2 What is lost in sampling?

Figure 2.2 shows two audio waveforms superimposed. The first is a sine wave
of frequency 200Hz, and the second is a sine wave of frequency 800Hz. The
waveforms have been sampled at 1kHz. At the points where the samples have
been taken, shown by the dark dots, the two waveforms always have the same
value. This means that if we are using a sample rate of 1kHz then, given just the




Sampling

¥
(@) P:\-!“ ?w‘ T-\’ , >
a N lw ) l P .\El{ Hl' P f
¥y
F
(b)
T
P
r
()
t
y
s
(d) —
y
(@) —

Figure 2.3 Samples at 1 kHz of (a) 200 Hz; (b) 800 Hz; (¢) 1200 Hz; (d) 1800 Hz;
(e) 2200 Hz sine waves.
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samples, we cannot distinguish between a 200 Hz sine wave and an 800 Hz sine
wave.,

In fact the situation is even worse than this. Figure 2.3 shows that sine waves
with frequencies of 200Hz, 800Hz, 1200Hz, 1800Hz, 2200 Hz and so on all
result in identical sets of samples.

Writing f; for the sample rate, we find that a sine wave of frequency f is
indistinguishable from a sine wave of frequency f,— f, fo+f. 2fi—f. 2/ + [,
3f.—f.3f+ [, etc., orin general kf, £ f for any integer k. We will look at why
this is in Section 2.3.

These sets of frequencies which are indistinguishable from one another are
called aliases, and the phenomenon in general is called aliasing.

2.3 Examples of aliasing

Aliasing is apparent — even exploited — in many situations.

When a sine wave is produced digitally, for example by a music synthesiser,
it is constructed from a series of samples. We must be careful to reconstruct the
sine wave at the frequency we want rather than any of the other alias frequencies
described above that the samples could represent. If the samples are not perfectly
converted back into a waveform, the result is that tones at the alias frequencies
are also generated. The effect is particularly noticeable because the ratio of the
alias frequency to the original frequency is usually not a simple one, with the
result that the mixture of tones is unpleasant to the ear. For example, if a sample
rate of 8kHz is used to generate a sine wave at 440 Hz, the first alias will be at
8000 Hz — 440 Hz = 7560 Hz, and the ratio of 7560 to 440 is not a simple fraction.

As mentioned previously, the shutter in a movie camera takes samples of a
scene at regular intervals. The sight of the wheels of a car in a movie moving at
apparently the wrong speed, or even backwards, is a familiar one.

Figure 2.4 shows a wheel with an arrow painted on it rotating clockwise at 11
revolutions per second. The wheel starts with the arrow pointing upwards at time
t =0s, and completes its first revolution just before 0.1 seconds have elapsed.
If pictures are taken of the wheel at regular intervals of 0.1s (shown in black in
the figure), that is, with a sample rate f; = 10Hz, then the wheel appears to be
rotating at one revolution per second. Again, we cannot distinguish frequency f
from frequency fi+ f.

This effect is exploited in the stroboscope, which is used to measure the speed
of a rotating wheel, for example in a car engine. The frequency of the strobe is
adjusted until the wheel appears to be stationary, that is, when kf, — /=0, or
f =kf,. Then we know that the wheel is rotating at the strobe frequency, or a
multiple of it.




14 Sampling

DO ORLEPO®

0.0s 0.1s 025 03s

Figure 2.4 A wheel turning at 11 revolutions per second: the black images show
samples taken every 0.1s.
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Figure 2.5 A wheel turning at 9 revolutions per second.

In these last two examples things are in fact not quite as simple as they might
appear. Consider what happens when the wheel in Figure 2.4 rotates clockwise at
f =9 revolutions per second. How does this appear when sampled at f, = 10 Hz?
As we can see from Figure 2.5, where the samples are again shown in black,

2.4 Negative frequencies 15

the wheel again appears to rotate at one revolution per second, but this time the
apparent motion is backwards.

The situation here is therefore different from what we saw in the case of sine
waves above. In this case, although we are still not able to distinguish between f
and f;+ f, sampling has not destroyed the distinction between frequencies f and
Js — f- We investigate this difference in more detail in the next section.

2.4 Negative frequencies

What is the difference between a movie of a swinging pendulum and one of
a rotating wheel? Why is it that the first movie looks the same when played
backwards, whereas the second looks different?

To understand what is happening, imagine a ‘conical pendulum’: a bob, sus-
pended by a string from a fixed point, moving in a circle in a horizontal plane.
The string sweeps out a cone as the bob moves. Viewed edge-on, the bob appears
to move from side to side like an ordinary pendulum, and we cannot tell whether
the underlying circular motion is clockwise or anticlockwise. However, if we
move our point of view up or down so that we observe it at an angle, we sud-
denly gain extra information about its motion and can determine its direction of
rotation.

In the edge-on view, we can only see one component of the motion of the bob —
the left-to-right component. Viewed at an angle, we can also see the front-to-back
component of the motion. Being able to see this component lets us distinguish
clockwise from anticlockwise motion.

Now let us formulate this idea mathematically.

Consider a point z lying on the circle of radius 1 centred at the origin in the
complex plane: see Figure 2.6. The line from z to the origin makes an angle &
with the real axis. The real part of z is Re (z) = cos #, and the imaginary part of z
is Im (z) = sin 8. If z moves around the circle at constant speed, then 6 = 27 ft,
where f is the frequency of the motion in revolutions per unit time, and ¢ is time,
chosen so that § =0 when ¢ = 0. If f is positive, the motion is anticlockwise (the
direction of increasing 8); if f is negative, the motion is clockwise.

The real and imaginary parts of z together determine its position unambiguously:
if we can observe them both, then we can reconstruct the motion of z perfectly,
and in particular we can tell if the motion is clockwise or anticlockwise. But
what if we are looking at our conical pendulum edge-on — in other words, if we
can only observe the real part of z, Re (z) = cos 67 Since cos 6 = cos(—6), our
observations will be the same if 8 = 2arft or if 8 = —2mft; or, equivalently, we
cannot distinguish a rotation of frequency f from one of frequency —f. We can
determine the magnitude of the frequency of the motion, but not its sign.
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Figure 2.6 z moves in a circle in the complex plane.

If our signal is real-valued, then negative frequencies are indistinguishable
from positive ones. If our signal is complex-valued, then positive and negative
frequencies can be distinguished.

In the light of this, let us now revisit the phenomenon of aliasing. We saw that,
for a sound waveform sampled at a frequency f;, a sine wave at a frequency f is
indistinguishable from sine waves at frequencies kf; & f for any integer k. Note,
however, that our sound waveform samples are real-valued, which by itself means
that we cannot distinguish between positive and negative frequencies. Comparing
this with the example of the wheel of Figure 2.4 and Figure 2.5, we come to the
following conclusions:

(i) Sine waves at frequencies kf, + f for any integer k, positive or negative, are
indistinguishable from one another when sampled at frequency f;.

(if) When samples are real-valued, as in the case of an audio signal, a sine wave
at frequency f is indistinguishable from one at frequency —Jf.

Exercise 2.2 shows that these conclusions are just a different way of stating
those we reached at the end of Section 2.2.

2.5 The Nyquist limit

Normally a sampling rate is chosen that is fast enough to capture the quickest
changes in the signal of interest. With a 1kHz sample rate, as in our example
above, we would normally work on the assumption that if a set of samples
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corresponds to a 200 Hz sine wave, then that is what the signal was. We would
ignore the possibility that the signal might have been a sine wave at some alias
frequency.

So what is the highest frequency we can work with if we have a sample rate
fs of 1kHz? If we see real-valued samples of a sine wave with a frequency f
of 499 Hz, we would recognise it as such rather than as the 501 Hz (f; — f) sine
wave that it might equally well have been; but if we see samples of a 501 Hz
sine wave, we will mistakenly assume that the frequency was 499 Hz. The two
candidate frequencies are f and f; — f, and we recognise the frequency correctly
when f is the smaller of these alternatives. This means that we need f < f; — f,
or equivalently f < f/2.

This upper bound of f;/2 on the frequencies that can be processed using a
sample rate of f; is called the Nyquist limit.

As we noted earlier, if the samples are real-valued, we cannot distinguish
negative frequencies in the range from 0 down to —j,/2 from their positive
counterparts in the range from 0 up to f;/2. The available range of frequen-
cies is thus f,/2. However, if the samples are complex-valued, the range of
distinguishable frequencies runs all the way from —f,/2 to f,/2, giving a total
span of f;. This is what you might expect: after all, the set of complex-valued
samples contains twice as many numbers as the set of real-valued samples, and
so it is reasonable that they should be able to represent twice the range of
frequencies.

2.6 Irregular sampling

So far we have assumed that the sampling process is under our control, and that
we will therefore be able to choose the points at which we wish to sample a
signal. The obvious approach is then to sample at regular intervals, which makes
analysis relatively straightforward. Indeed, most of the techniques described in
this book can only be used on signals that are regularly sampled. Also, regularly
spaced samples can simply be stored in an array in order: there is no need to tag
each with the time (or position) at which it was taken.

Sometimes, however, we do not have direct control over the sampling process,
and we are presented with samples taken at irregular intervals. We can consider
two distinct cases: where there is an underlying regular sample rate, but some
of the data points are missing; and where there is no such underlying regular
process.

For an example of the first case, consider analysing the changes in a share
price as a signal. We might have one sample of share price information per day,
but there would be gaps in our data corresponding to weekends and holidays.
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Another example might be a signal that has been sampled regularly, but where
the sample data have been transmitted over an unreliable connection or stored on
an unreliable medium, and some of the samples have been lost.

An example of the second case is Jand height data. Ideally, we would like to
place a regular sampling grid over the area of interest and measure the height of
the land at each grid point. However, this may not be feasible in practice — if a
sample point happens to fall in the middle of a building, for instance — and we
may have to make do with data samples taken from wherever it is possible to
obtain them.

Working with irregular samples

There are three main methods available for dealing with irregular samples.

Ignore the problem In the stock market data example above, it may be sat-
isfactory simply to ignore the missing data points and close up the gaps. This is
arguably the correct approach if there were no trading on the days corresponding
to the gaps. However, we would encounter difficulties if we wanted to compare
sets of data which had gaps in different places, such as stock market data from
exchanges that observe different holidays.

Convert to regular samples by interpolation This is the commonest approach.
A regular sampling grid is laid over the irregular samples, and a value for each
of the new sample points is computed from the samples that are available. As
Figure 2.7 shows, the computation may be as simple as copying the value from
the nearest available sample point (so-called ‘zero-order interpolation’), or may
involve linear (“first-order’) interpolation between the two nearest points; more
sophisticated techniques can also be used.

Techniques like this are used in digital cameras. It is prohibitively expensive
to make image sensors that have millions of pixels without some of the pixels
being faulty. Faulty pixels are identified during the manufacturing process, and
their locations are programmed into the camera. The camera can then discard
the samples from these locations and replace them by averages of values from
adjacent (working) pixels.

Likelihood methods These are the most powerful techniques for dealing with
irregular samples. They seek to determine the ‘most likely’ original signal that
gave rise to the samples collected, whether regularly spaced or not. Of course, in
order to do this, we need to have some idea — a model — of what constitutes a
plausible signal and what does not. Likelihood methods are used in the restoration
of audio from old records, where likely sounding segments of audio waveform
are constructed to replace sections destroyed by scratches.
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(a)

Figure 2.7 Trregularly sampled waveform: (a) original samples, in grey; (b) reg-
ular samples (black) derived by copying nearest sample; (c) regular samples
(black) derived by linear interpolation.

Non-rectangular grids

A special case that often arises is where two-dimensional data are sampled on a
regular, but not a rectangular, grid. Sometimes it is possible to convert the data
directly into samples on a rectangular grid.

For example, an image may have been sampled by a sensor on a hexagonal
grid as shown in Figure 2.8. Observe that if we could move the sample points
in alternate columns (the black points in the figure) down by half a pixel then
the samples would all line up horizontally, the resulting sample grid would be
rectangular, and our problem would be solved. We have therefore reduced the
problem to one of resampling, or interpolating, the columns of black samples,
each of which is a one-dimensional, regularly sampled, signal. Techniques for
doing that are described in Chapter 5.

In other cases, it is possible to ignore the fact that the sampling grid is not
rectangular. In simple radar systems, an antenna revolves slowly, regularly emit-
ting brief, tightly focussed pulses of radio waves as it does so. A pulse reflected
back by an object is converted into a voltage at the antenna, now being used as a
receiver: the time delay between transmitting the original pulse and receiving the
reflection lets us work out the distance to the reflect